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Learning the imaging mechanism directly from
optical microscopy observations
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The optical microscopy image plays an important role in scientific research through the direct visualization of the
nanoworld, where the imaging mechanism is described as the convolution of the point spread function (PSF) and
emitters. Based on & priori knowledge of the PSF or equivalent PSF, it is possible to achieve more precise ex-
ploration of the nanoworld. However, it is an outstanding challenge to directly extract the PSF from microscopy
images. Here, with the help of self-supervised learning, we propose a physics-informed masked autoencoder
(PiMAE) that enables a learnable estimation of the PSF and emitters directly from the raw microscopy images.
We demonstrate our method in synthetic data and real-world experiments with significant accuracy and noise
robustness. PiMAE outperforms DeepSTORM and the Richardson—Lucy algorithm in synthetic data tasks with
an average improvement of 19.6% and 50.7% (35 tasks), respectively, as measured by the normalized root mean
square error (NRMSE) metric. This is achieved without prior knowledge of the PSF, in contrast to the supervised
approach used by DeepSTORM and the known PSF assumption in the Richardson—Lucy algorithm. Our method,
PiMAE, provides a feasible scheme for achieving the hidden imaging mechanism in optical microscopy and has

the potential to learn hidden mechanisms in many more systems. ~© 2023 Chinese Laser Press

https://doi.org/10.1364/PRJ.488310

1. INTRODUCTION

Optical microscopy is of great importance in scientific research
to observe the nanoworld. The common view is that the Abbe
diffraction limit describes the lower bound of the spot size and
thus limits the microscopic resolution. However, recent studies
have demonstrated that by designing and measuring the point
spread function (PSF) or equivalent PSF of microscopy, it is
possible to achieve subdiffraction limit localization of emitters.
Techniques such as photoactivated localization microscopy [1]
and stochastic optical reconstruction microscopy [2] attain
superresolution molecular localization through selective excita-
tion and reconstruction algorithms that are based on the
microscopy PSF. The spatial mode sorting-based microscopic
imaging method (SPADE) [3] can be treated as a deconvolu-

emitters in raw images by synthesizing training sets with the
same PSFs as those used in actual experiments. In all of these
microscopic imaging techniques, prior knowledge of the PSF is
crucial, making it of great interest to develop a method for
directly estimating the PSF from raw images.

Currently, some traditional algorithms such as Deconvblind
[8] use maximum likelihood estimation to infer the PSF and
emitters from raw images [9-18]. However, these algorithms
face two challenges. First, they struggle to estimate PSFs with
complex shapes. Second, they can lead to trivial solutions where
the PSF is a 6 function and the image of the emitters is equal to
the raw image. To tackle these issues, researchers have turned to
using DNNs [19]. However, this requires a library of PSFs
and a large number of sharp microscope images to generate

tion problem using higher-order modes as the equivalent PSF.
Stimulated-emission depletion microscopy achieves superreso-
lution imaging by introducing illumination with donut-shaped
PSFs to selectively deactivate fluorophores [4,5]. Additionally,
deep-learning-based methods, such as DeepSTORM [6] and
DECODE [7], use deep neural networks (DNNs) to predict
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the training data set, which limits the application of these
algorithms.

We use self-supervised learning to overcome the above chal-
lenges. Here, we treat the PSF as the pattern hidden in the raw
images and the emitters as the sparse representation of the raw
image. As a result, we propose a physics-informed masked
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autoencoder (PiIMAE, Fig. 1) that estimates the PSF and
emitters directly from the microscopy raw images. Using raw
data synthesized by various simulated PSFs, we compare the
results of PIMAE and Deconvblind [8] for estimating PSF,
as well as PIAME, the Richardson-Lucy algorithm [20], and
DeepSTORM [6] for localizing emitters. Our proposed self-
supervised learning approach, PIMAE, outperforms existing
algorithms without the need for data annotation or PSF mea-
surement. PIMAE demonstrates a significant performance im-
provement, as measured by the normalized root mean square
error (NRMSE) metric, and is highly resistant to noise. In tests
with real-world experiments, PIMAE resolves wide-field
microscopy images of standard PSF, out-of-focus PSF, and
aberrated PSF with high quality, and the results achieve a res-
olution comparable to structured illumination microscopy
(SIM) results. Also, we demonstrate that five raw images can
satisfy the requirements of self-supervised training. This ap-
proach, PIMAE, shows wide applicability in synthetic data test-
ing and real-world experiments. We expect its usage for the
estimation of hidden mechanisms in various physical systems.

2. METHOD

Self-supervised learning leverages the inherent structure or pat-
terns in darta to learn meaningful representations. There are two
main categories: contrastive learning [21-24] and pretext task
learning [25-29]. Mask image modeling (MIM) [25,30-33] is
a pretext task-learning technique that randomly masks portions
of an input image. Recently, MIM has been shown to learn

PSF

Emitters

transferable, robust, and generalized representations from visual
images, improving performance in downstream computer vi-
sion tasks [34]. PIMAE is an MIM-based method that recon-
structs raw images according to the imaging principle of optical
microscopy, which is formulated by the convolution of the PSF
and the emitters.

A. PIiMAE Model

The PIMAE model (Fig. 1) consists of three key components:
(1) a vision transformer-based (ViT) [35] encoder—decoder ar-
chitecture with a mask layer to prevent trivial solutions while
estimating emitters, (2) a convolutional neural network as a
prior for PSF estimation [36], and (3) a microscopic imaging
simulator that implements the imaging principle formulated by
PSF and emitter convolution. Appendix A provides detailed in-
formation on the network architecture and the embedding of
physical principles. PIMAE requires only a few raw images for
training, which is attributed to the carefully designed loss func-
tion. The loss function consists of two parts: one measures the
difference between the raw and the reconstruction images, in-
cluding the mean of the absolute difference and the multiscale
structure similarity; the other part is a constraint on the PSF,
including the total variation loss measuring the PSF continuity
and the offset distance of the PSF’s center of mass. Appendix B
contains the expressions for the loss functions.

B. Training
The ViT-based encoder in PIMAE is pretrained on the COCO

data set [37] to improve performance. The pretraining is based
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Fig. 1.

PiMAE overview. PIMAE, a physics-informed masked autoencoder, is proposed to learn the imaging mechanism of an optical microscope.
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on self-supervised learning on a masked autoencoder that does
not include a physical simulator module (see Ref. [8] for de-
tails). After pretraining, PIMAE loads the trained encoder
parameters and undergoes self-supervised training using raw
microscopic images. The input image size is 144 x 144 pixels,
and we use the RAdam optimizer [38] for training with a learn-
ing rate of 10~* and a batch size of 18. The training runs for
5 x 104 steps.

Within PIMAE, the convolutional neural network shown in
Fig. 1 is randomly initialized, takes a fixed random vector as
input, and outputs the predicted PSF. Relevant details can
be found in Appendix A. As PIMAE undergoes self-supervised
training, the predicted PSF of the convolutional neural network
(CNN) becomes more accurate and closer to the true PSF, as
shown in Fig. 2. The experimental setup is shown in Fig. 3.

C. Synthetic Data Design and Evaluation

To evaluate PIMAE’s performance, synthetic data sets were
designed considering the following factors: (1) PIMAE’s re-
quirement for sparse emitter data, (2) the need for the emitter
data without discrete points for more challenging PSF estima-
tion tasks, (3) evaluation on standard Gaussian PSF and other
challenging PSFs, (4) evaluation at various noise levels, and
(5) evaluation at various emitter sparsity levels. Therefore, the
Sketches data set [39] was chosen as the emitter, as described in
Appendix D.1.A, and various commonly used PSFs were de-
signed in Appendix D.2. The noise robustness is evaluated by
adding noise to the raw images at different levels. Moreover,
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images with sparse lines of varying densities were generated
as emitters to assess the impact of sparsity on PIMAE, as de-
scribed in Appendix D.1.B.

For each scenario, we sample 1000 images as the training set
and 100 images as the test set. For PSF estimation, we use
Deconvblind [8] as a benchmark. For emitter localization, we
use the Richardson—Lucy algorithm [20] and DeepSTORM [6]
as reference methods. The results are measured by NRMSE
[sece Appendix F for definition and Appendix ] for multiscale
structural similarity (MS-SSIM) results]. Note that for the
Richardson—Lucy and DeepSTORM tests, the PSF is assumed
a priori, while for PIMAE, the PSF is treated as unknown.

D. Real-World Experiments

We evaluate PIMAE’s performance in handling both standard
and nonstandard PSF microscopy images in real-world experi-
ments. Since the true emitter positions cannot be obtained, we
use the BioSR [40] data set to evaluate PIMAE’s handling of
standard PSF microscopy images and compare it with SIM.
Then, we use our custom-made wide-field microscope to pro-
duce out-of-focus and distorted PSF microscopy images to an-
alyze PIMAE’s performance in handling nonstandard PSF
microscopy images.

In the experiment of wide-field microscopic imaging of ni-
trogen vacancy (NV) color centers, a 532 nm (Coherent Vendi
10 single longitudinal mode laser) laser passes through a
customized precision electronic timing shutter, which controls
the duration of the laser beams flexibly. The laser is then

epoch 100

epoch=200 epoch=499

Fig. 2. DSF learning. The results demonstrate that PIMAE can successfully learn the PSF from raw images through the training process. (a) The
figure displays the PSF of SPADE, including LG mode LG,, and HG mode HG,,. The scale bar is 0.5 pm. (b) Out-of-focus (800 and 1400 nm)
images under a wide-field microscope imaging setup, along with the in-focus (0 nm) image. The scale bar is 0.5 pm.



10

PSF Emitter
R-L deconv | DeepSTORM PiMAE
(known PSF) (known PSF) (unknown PSF)

zinm | Raw data Actual | deconvblind |  PiMAE Actual

1400

s
PIMAE § 0.30 Richardson-Lucy
= deconvblind 2 —— DeepSTORM
50.25 PIMAE
3
5020
2015
E
&
50.10 L_'__/‘_‘—__'
]
2
£
0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
(d) z offset (nm) z offset (nm)
PSF Emitter
mode Raw data . . R-L deconv | DeepSTORM PiMAE
Actual deconvblind PiMAE Actual (known PSF) (known PSF) (unknown PSF)
HG,,
HG,,
LG,,
LG,,

_
(]

- (f) 0.40
PIMAE 8 .35/ B Richardson-Lucy ~EEEN DeepSTORM [ PIMAE
mmm deconvblind wo

20.30
5
50.25 ° °
£0.20 8 °
£0.15 o ° 2
20.10
4
H
z

HG2; HG3; LGuy LG22 HG2, HGs1 LGy LG22
mode mode

NRMSE of PSF for SPADE data
o o o
o [ =
G 1S %

Fig. 3. Evaluation in synthetic data sets. (a) Results of estimated PSF and emitters from out-of-focus synthetic data. The scale bar is 0.5 pm.
(b) NRMSE of the results of estimated PSF from out-of-focus synthetic data; (c) NRMSE of the results of estimated emitters from out-of-focus
synthetic data. (d) Results of estimated PSF and emitters from synthetic data with HG mode and LG mode (HG/LG) as PSF. The scale bar is
0.5 pm. (¢) NRMSE of the results of estimated PSF from HG/LG synthetic data; (f) NRMSE of the results of estimated emitters from HG/LG

synthetic data. The noise scale in the above evaluations is noiseyq/raw,,c., = 0.5.

expanded and sent to a polarization mode controller that con- UPLFLN100XO2PH) by a fused quartz lens with a focal
sists of a polarizing film (LPVISE100-A) and a half-wave plate length of 150 mm. The fluorescence signals are collected by
(Thorlabs WPH10ME-532). The extended laser is focused a scientific complementary metal oxide semiconductor
on the focal plane behind the objective lens (Olympus, (sCMOS) camera (Hamamatsu, Orca Flash 4.0 v.3). We use
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a manual zoom lens (Nikon AF 70-300 mm, /4-5.6G, focal
length between 70 and 300 mm, and the field of view of 6.3) as
a tube lens to continuously change the magnification of the
microscopic system.

3. RESULT

A. PIMAE Achieves High Accuracy on Synthetic

Data Sets

Being out-of-focus is one of the most common factors that can
affect the quality of microscope imaging. PIMAE is capable of
addressing this issue, and we demonstrate this by simulating a
range of wide-field microscopy PSFs with out-of-focus distan-
ces that vary from 0 to 1400 nm. We also add Gaussian noise
with a scale of noiseyy/raw e, = 0.5 to raw images, where
noiseyy is the standard deviation of Gaussian noise [41] and
AW cn 1 the mean value of the raw image. First, we evaluate
the performance of estimated PSFs. Figure 3(a) shows the ac-
tual PSFs and those estimated by Deconvblind and PiMAE.
The PIMAE estimated PSF is similar to the actual PSF for all
out-of-focus distances, while most of Deconvblind’s estimated
PSFs are far from the truth, indicating that Deconvblind can-
not resolve raw images with complex PSFs. Furthermore, the
estimated PSF by Deconvblind converges to the § function
after several iterations (see Appendix G). The NRMSE of
the estimated PSFs at different out-of-focus distances is quan-
tified in Fig. 3(b), with PIMAE achieving much better results
than Deconvblind. Second, we evaluate the performance of
estimated emitters. Figure 3(a) also shows the actual emitters
and those estimated by the Richardson—Lucy algorithm,
DeepSTORM (see Appendix H for implementation details),
and PIMAE. When the out-of-focus distance is large, PIMAE
and DeepSTORM significantly outperform the Richardson—
Lucy algorithm. The NRMSE at different blur distances is
shown in Fig. 3(c), where PIMAE achieves the best perfor-
mance despite not knowing the actual PSF.

Recently, researchers have found that imaging resolution can
be improved using a spatial pattern sorter [3,19,42], a method
called SPADE. Using SPADE for confocal microscopy is
equivalent to using PSFs corresponding to spatial modes [3],
such as Zernike modes, Hermite—Gaussian (HG) modes,
and Laguerre—Gaussian (LG) modes. However, SPADE faces
several challenges, including the need for an accurate determi-
nation of the spatial mode (i.e., the equivalent PSF), high sen-
sitivity to noise, and a lack of reconstruction algorithms for
complex spatial modes. PIMAE can solve these problems.
Figures 3(d)-3(f) show the SPADE imaging results with noise
scale noisegy/raw e, = 0.5. PIMAE can accurately estimate
the equivalent PSF and emitters, and the performance is much
better than that of the Deconvblind, Richardson—Lucy algo-
rithm, and DeepSTORM. Therefore, PIMAE can significantly
improve the performance of SPADE. These experiments dem-
onstrate that PIMAE is effective for scenarios with unknown
and complex imaging PSFs.

B. Noise Robustness

Noise robustness is a crucial metric for evaluating reconstruction
algorithms. We evaluate noise robustness in three scenarios:
(1) in-focus wide-field microscopy; (2) wide-field microscopy
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at 600 nm out-of-focus distance; and (3) Laguerre-Gaussian
mode LG;, SPADE imaging. The raw image of each scenario
contains Gaussian noise (the speckle noise results are shown
in Appendix I) at scales (noiseyy/raw,,.,,) of 0.01, 0.1, 0.5,
1, and 2, as shown in Fig. 4 (see Appendix ] for MS-SSIM re-
sults). We first compare the results of Deconvblind and PIMAE
for estimating PSF. We find that PIMAE shows excellent noise
immunity, substantially outperforming Deconvblind in all tests.
We then compare the results of the Richardson—Lucy algorithm,
DeepSTORM, and PIMAE for estimating the emitters. Overall,
PiMAE performs the best, only slightly behind DeepSTORM in
the standard PSF scenario at low noise. The Richardson—Lucy
algorithm performs similarly to DeepSTORM and PiMAE
when the noise scale is very small. However, when the noise scale
slightly increases, its performance significantly decreases. This
shows the advantage of deep-learning-based methods over tradi-
tional algorithms in terms of noise robustness. Moreover, the
advantage of PIMAE over the other two algorithms increases
as the scale of the noise becomes larger and the shape of the
PSF becomes more complex.

C. PIMAE Enables Superresolution Imaging for
Wide-Field Microscopy Comparable to SIM

The endoplasmic reticulum (ER) is a system of tunnels sur-
rounded by membranes in eukaryotic cells. In the data set
BioSR [40], the researchers imaged the ER in the same field
of view using wide-field microscopy and SIM, respectively.
Figure 5(a) shows the results of PIMAE-resolved wide-field
microscopy raw images (more images of the results are in
Appendix K). We find that the resolution of the PiIMAE-
estimated emitter is comparable to that of SIM, which has a res-
olution twice that of the diffraction limit. Figure 5(b) shows the
cross-sectional results, where the peak positions of the PIMAE-
estimated emitter match the peak positions of the SIM results,
corresponding to indistinguishable wide-field imaging results.
This indicates that the resolvability of the results of wide-field
microscopy with PIMAE-estimated emitters is improved to a
level similar to that of SIM. Figure 5(c) shows the results of
the PIMAE-estimated PSF with FWHM of 230 nm. The fluo-
rescence wavelength of the raw image is 488 nm, the numerical
aperture (NA) is 1.3, and its diffraction limit is 0.61 x ﬁ =
0.61 x 48?%% 229 nm, which is very close to the FWHM
of the PiMAE-estimated PSF. This experiment shows that
PiMAE can be applied to real-world experiments to estimate
PSF from raw microscopy data and further improve resolution.

D. PIMAE Enables Imaging for Nonstandard
Wide-Field Microscopy

The NV color center is a point defect in diamond that is widely
used in superresolution microscopy [5,43] and quantum sens-
ing [44,45]. We make a home-built wide field microscope to
image the NV center in fluorescent nanodiamonds (FNDs) at
out-of-focus distances of 0, 400, and 800 nm. We take 10 raw
images with a size of 2048 pixels and a field-of-view size of
81.92 pm at each out-of-focus distance. Figure 6(a) shows that
we image NV color centers in the same field of view at different
out-of-focus distances, and Fig. 6(b) shows the corresponding
PiMAE-estimated emitters. This is a side-by-side demonstra-
tion of the accuracy of the PiIMAE-estimated emitters. The
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of the results of estimated PSF from 600 nm out-of-focus synthetic
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Fig. 5. Superresolution imaging of ER. (a) The figures are the raw
image of wide-field microscopic imaging of ER, the result of estimat-
ing the emitter from wide-field microscopic imaging using PIMAE, the
result of SIM of the same field of view, and the result of wide-field
microscopic imaging reconstructed by PIMAE. Data from BioSR data
set [40]. The scale bar is 2.50 pm. (b) Comparison of the cross section
of the PIMAE estimated emitters and SIM results; it shows that the
resolution of the results obtained by PIMAE is comparable to that of
SIM. (c) PiIMAE estimated wide-field microscope PSF with an
FWHM of 230 nm, where the diffraction limit is 229 nm.

out-of-focus distance changes during the experiment, but the
field of view is invariant. Therefore, the PiMAE-estimated
emitter position should be constant at each out-of-focus dis-
tance, as we observe in Figs. 6(b) and 6(c). Figure 6(d) shows
the variation of the PSF. The asymmetry of the PSF comes
from the slight tlt of the carrier stage. Also, we show the
PSF cross section for each scene. The FWHM of the estimated
PSF at focus is 382 nm, which corresponds to a diffraction limit
of 384 nm. This suggests that PIMAE can be applied in real-
world experiments to improve the imaging capabilities of mi-
croscopes suffering from out-of-focus.

Moreover, we construct a nonstandard PSF for wide-field
microscopic imaging of NV color centers by making the objec-
tive mismatch with the coverslip (see Appendix K.2); the results
are shown in Figs. 6(e)-6(g). Figure 6(e) shows the imaging
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Fig.6. Wide-field microscopy imaging of NV color centers. (a)—(d) Results of wide-field microscopy imaging of NV color centers at different out-
of-focus distances; (a) raw images; the scale bar is 1.25 pm. (b) PIMAE estimated emitters; (c) comparison of the cross section of the raw images and
the PIMAE-estimated emitters, where the black dashed line represents the raw images and the yellow solid line represents the PiMAE-estimated
emitters; the peak positions of the PIMAE-estimated emitter results are constant for different out-of-focus distances, as seen from the blue dashed
line. (d) PIMAE estimated PSF; FWHM of in-focus PSF is 382 nm, where the diffraction limit is 384 nm; the larger the out-of-focus distance, the
larger the paraflap of the PSF, despite the decrease of the FWHM in the center region. (¢) Comparison of nonstandard microscopic imaging and
PiMAE estimated emitters. The scale bar is 3.2 pm. (f) Cross section of the nonstandard microscopic imaging and PIMAE estimated emitters;

(g) PIMAE-estimated nonstandard microscopy PSF.

results and PiMAE-estimated emitters. Figure 6(f) shows the
results of the cross-sectional comparison. Figure 6(g) shows
the PiIMAE-estimated PSE. This experiment demonstrates that
PiMAE enables researchers to use microscopy with nonstand-
ard PSFs for imaging. And PIMAE’s ability to resolve nonstand-
ard PSFs expands the application scenarios of NV color centers
in fields such as quantum sensing and bioimaging.

E. PiMAE Enables Microscopy Imaging with Widely
Spread Out PSFs

Further testing the capabilities of PIMAE, we evaluate the per-
formance of PIMAE on complex widely spread out PSFs, rep-
resented by the character “USTC.” We use 1000 images as the
training set and 100 images as the test set. The noise level is set
at noisegy/raw ., = 0.01. The results of the raw images, the
PiMAE processed images, and the evaluation of the NRMSE
metric are depicted in Fig. 7. PIMAE performed exceptionally
well, demonstrating its effectiveness in difficult scenarios.

F. Evaluation of the Influence of Emitter Sparsity

Dense samples can pose challenges for estimating both the PSF
and the emitters. We designed emitters with varying densities,
as outlined in Appendix D.1.B, and employed LG,, as the PSF.

(a) Raw data

‘ /
A
© 4 (d)

PIMAE 5022
EEE deconvblind %u.zoo

?0.175
H

Emitter (PiMAE) Emitter (actual) (b)

PSF (actual)

UST

PSF (PIMAE)

3 Richardson-Lucy.
B DeepSTORM
=3 PIMAE

50.150

o
50.125
0.14 =
0.100
5
0.12 $0.075
£
z
Z0.050

ustc ustc
mode mode

NRMSE of PSF for complex data

Fig. 7. Evaluation using synthetic data based on PSF of the shape
“USTC.” (a) Comparison of the raw image, the PIMAE estimated
emitters, and the actual emitters; the scale bar is 0.5 pm.
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the scale bar is 0.5 pm. (c) NRMSE of the estimated PSF;
(d) NRMSE of the estimated emitters.
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As shown in Fig. 8, we observe that as the number of lines
in each image (512 x 512) increases, PIMAE’s performance
in estimating both the PSF and emitters deteriorates.
Intuitively, when the number of lines in each image is less than
or equal to 50, PIMAE performs well, while performance is
poor when the number of lines is greater than 50. This process
allows us to evaluate the influence of emitter sparsity
on PiIMAE.

G. Computational Resource and Speed

In this work, the code is based on the Python library PyTorch,
as we show in Code File 1 [46]. PyTorch is a prominent open-
source deep-learning framework that offers an efficient and
user-friendly platform for building and deploying deep-learning
models. In terms of model training, we utilize three Nvidia
Tesla A100 40 GB graphics cards in parallel, which is
necessary due to ViT’s substantial computational and memory

requirements. The training time for each task is 11 h, and the
inference time for a single 512 x 512 image is approximately 4 s
with the trained model. Compared to supervised models such
as DeepSTORM, which takes about 1 h for training and 0.1 s
for inference, PIMAE is slower but more powerful. As for the
data set size requirement, we show in Appendix E that PIMAE
achieves good training results, even with a minimum of five
images in the training set.

4. DISCUSSION

In this study, we introduce PIMAE, a novel approach for esti-
mating PSF and emitters directly from raw microscopy images.
PiMAE addresses several challenges: it allows for direct identi-
fication of the PSF from raw data, enabling deep-learning
model training without the need for real-world or synthetic an-
notation; it has excellent noise resistance; and it is convenient
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and widely applicable, requiring only about five raw images to
resolve the PSF and emitters.

Our method, PiIMAE, extracts hidden variables from raw
data using physical knowledge. By recognizing PSF as a hidden
variable in a linear optical system, the underlying physical prin-
ciple involves the decomposition of raw data through the con-
volution of the emitters with the PSF. Hidden variables are
ubiquitous in real-world experiments, by integrating masked
autoencoder and physical knowledge, PIMAE provides a frame-
work to solve hidden variables in physical systems through self-
supervised learning.

However, it should be noted that PIMAE is an emitter
localization algorithm, which means that it requires a sufficient
degree of sample sparsity to perform effectively. We conducted
an evaluation using synthetic data experiments, and while
PiMAE performed reasonably well, there is still room for im-
provement. There is ambiguity in extracting the PSF and emit-
ters directly from the raw images, so PIMAE opts for a simpler
emitter distribution to learn the real PSF, which might result in
artifacts. As PIMAE supplies the PSF needed for RL-deconv
and DeepSTORM, potential solutions may be to integrate
PiMAE with the aforementioned methods or to perform un-
masked self-supervised training after masked self-supervised
training within PIMAE. Therefore, future work could focus
on further enhancing the robustness of PIMAE for use in dense
scenarios.

5. CONCLUSION

In conclusion, we have presented PIMAE, a novel solution for
directly extracting the PSF and emitters from raw optical micros-
copy images. By combining the principles of optical microscopy
with self-supervised learning, PIMAE demonstrates impressive
accuracy and noise robustness in synthetic data experiments,
outperforming existing methods such as DeepSTORM and
the Richardson—Lucy algorithm. Appendix L shows the full
range of synthetic data evaluation metrics. Moreover, our
method has been successfully applied to real-world microscopy
experiments, resolving wide-field microscopy images with vari-
ous PSFs. With its ability to learn the hidden mechanisms from
raw data, PIMAE has a wide range of potential applications in
optical microscopy and scientific studies.

APPENDIX A: NETWORK ARCHITECTURE

The principle of microscopic imaging is
raw image = noise(emitters @ PSF) + background, (A1)

where the raw image is the result of convolving the emitters and
the PSF with the presence of noise and background. To put this
principle into practice, we have developed the PIMAE method,
which consists of three modules: emitter inference from raw
images, PSF generation, and background separation.

1. Emitter Inference

We have improved the original masked autoencoder for use in
microscopic imaging by integrating a voting head into its trans-
former-based decoder. The head predicts the position and
intensity of emitters, respectively. Specifically, the decoder
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produces 9 x 9 feature patches, which serve as the input for the
voting head. For the emitter position, the voting head employs
a two-step process: (1) a multilayer perceptron (MLP) predicts
64 density maps from each feature patch, and (2) the emitter
positions are obtained by computing the center of mass of each
density map. For emitter intensity, an MLP predicts 64 inten-
sities. The predicted emitter image is generated by placing a
Gaussian-type point tensor with ¢ = 1 scaled by its corre-
sponding intensity at the predicted position, similar to the de-
sign in crowd-counting methods [47]. The mask layer is an
essential element in the design of a masked autoencoder. Its
main function is to prevent the model from learning trivial sol-
utions and instead encourage it to focus on the relevant features
of the input data. This is achieved by randomly blocking out
specific parts of the input tensor. To improve the training ef-
ficiency, we introduced a CNN stem consisting of four
convolutional layers placed before the mask layer [48]. The in-
put image size of 144 x 144 is reduced to 9 x 9 after the CNN
stem, with each pixel encoding a 384-dimensional vector. We
refer to this model as the point predictor, as shown in Fig. 9.

input

Conv2d
Conv2d
Conv2d
Conv2d
| mask layer |
| Transformer (Encoder) |
[ Linear '—)?4—{ Random Vector
| Transformer (Decoder) |
Linear Linear
LeakyReLU LeakyReLU
Linear Linear
density intensity
position x y —> pts

point predictor

‘ Random Vector (fixed) ‘
v
Conv2d
LeakyReLU
Conv2d
LeakyRelLU
Conv2d
LeakyReLU
Conv2d
LeakyReLU
Conv2d

v

Reshape

PSF

PSF predictor
Fig. 9. Network architecture. PIMAE consists of two predictors,

namely, a PSF predictor and a point predictor. The point predictor
outputs the location and intensity of the points.
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2. PSF Generation

Motivated by the observation that a CNN can function as a
well-designed prior and deliver outstanding results in typical
inverse problems, as evidenced by Deep Image Prior [36], we
constructed the PSF generator, as illustrated in Fig. 9. The neu-
ral network’s parameters are adjusted through self-supervised
learning to produce the PSF, with a random matrix as the in-
put, which remains constant throughout the learning process.

3. Background Separation

To isolate the background component from the raw image, we
employ a new point predictor (Fig. 9). We assume that the
background has a low spatial variability and approximate it
by drawing the output points from the point predictor follow-
ing a Gaussian distribution with ¢ = 16.

APPENDIX B: DESIGN OF LOSS FUNCTION

The loss function in our approach is composed of four com-
ponents, divided into two categories.

The first category measures the similarity between the re-
constructed image and the raw image. It consists of the mean
absolute difference (L1) and the MS-SSIM, as expressed in
Eq. (F2). The combination of these two functions has been
demonstrated to perform better than individual functions such
as L1 and mean squared error (MSE) in image restoration
tasks [49].

The second category concerns the constraint on the gener-
ated PSF. To ensure that the center of mass of the generated
PSF is at the center of the PSF tensor, we calculate the center
distance loss as follows:

Center distance loss

A
i, Intensity; - Coordinate; ——
= - Center position|. (B1)

i
>_:; Intensity;,

Additionally, to ensure that the generated PSF is spatially
continuous, we use the total variation (TV) loss to quantify
the smoothness of the image,

TV loss = Z(Intensityi j-1 — Intensity; J)z
7
+ (Intensity, 1 ; - Intensity; )*. (B2)

Finally, the loss function is defined as

Loss function = a; - L1 + a, - MS-SSIM
+ a; - Centerdistance + a4 - TV, (B3)

where a; = 0.95, a, = 0.05, a3 = 0.001, and a; = 0.001.

APPENDIX C: PRETRAINING WITH COCO DATA
SET

Recent research has shown that self-supervised pretraining is
effective in improving accuracy and robustness in computer
vision tasks. In this study, we employed a masked autoencoder
[shown in Fig. 10(b)] to pretrain the encoder of PIMAE on
the COCO data set [37] (unlabeled), a large-scale data set

COCO example

| input |
v

Conv2d (out_channels=48, kernel_size=3)

Conv2d (out_channels=96, kernel_size=3)

Conv2d (out_channels=192, kemel_size=3)

Conv2d (out_channels=384, kemel_size=3)

¥

| mask layer |

| Transformer (Encoder) |
| Linear

Random Vector

| Transformer (Decoder) |

output

pretrain network

Fig. 10. Pretraining with COCO data set.

containing 330,000 RGB images of varying sizes for object de-
tection, segmentation, and captioning tasks.

For pretraining, we randomly cropped 144 x 144 portions
from the images and transformed them into gray-scale images
to form the training set. Examples of the cropped images are
shown in Fig. 10(a).

We use the MSE as the loss function during the training
process, with a learning rate of 10~* and 500 training epochs.
A masking rate of 75% is implemented, and the RAdam opti-
mizer is used. The results of the MAE reconstruction after pre-
training can be seen in Fig. 11. Figure 12 demonstrates that
the pretraining process has significantly contributed to the
enhancement of the localization of emitters’ performance.

masked image

MAE reconstruction ground-truth

Fig. 11. Example results on COCO. We show the masked image,
MAE reconstruction, and the ground truth. The masking ratio
here is 0.75.
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Fig. 12. Pretraining enhancements. Comparison of NRMSE met-
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Using 600 nm out-of-focus data as an example, after 500 rounds of
training, the learning rate is 3 x 1074,

When the MAE pretraining is finished, the parameters of the
encoder and decoder are stored for the subsequent training

of PIMAE.

APPENDIX D: SYNTHETIC DATA GENERATION

In this section, we present the construction method of the syn-
thetic data used to evaluate PIMAE, including emitters
and PSFs.

1. Emitters

A. Sketches

Sketches data set [39] is a large-scale exploration of human
sketches containing a wide variety of morphologies. To evaluate
the performance of the method, emitters of synthetic data are
sampled from the Sketches data set. Figure 13 illustrates exam-
ples from the Sketches data set.

B. Random Lines

To evaluate the performance of the model under various levels
of sparsity, we implement an algorithm to generate images con-
taining /V randomly generated lines.

1. A black image of size 512 x 512 is created.
2. A loop is executed /N times to randomly draw lines on
the image. In each iteration:

a. The starting and ending points of a line are randomly
generated.

b. The intensity of the line is randomly generated.

c. The line is drawn on the image.

3. The image is smoothened to remove jaggedness.

The resulting emitters are shown in Fig. 14.

2. PSFs

A. Out-of-Focus

We simulate the imaging results of a wide-field microscope
when the sample is out of focus. The near-focus amplitude
can be described using the scalar Debye integral [50],
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Fig. 13. Sketches data set examples.

Fig. 14. Randomly generated lines.

h(x,y,2:4) = Cy /a Vcos T (kp sin @)e 7 59 sin 4d6,
0
(D1)

where Cj is a complex constant, J is the zeroth-order Bessel
function of the first kind, p = /x? + y?, the refractive index is
n, the numerical aperture NA = 7 sin a, and the wavenumber

k = n(2n/2). The PSF of the wide-field microscopy is
PSF(x, 3, 2) = |h(x, y, 25 Ae) |*- (D2)

The values of the parameters in this experiment are Cy = 1,
n =1, gy = 400 nm, NA = 0.7, and each pixel has a size of

39 nm. A, represents the fluorescence emission wavelength.

B. SPADE

We simulated four scenarios in the SPADE, corresponding
to PSFs as Hermite—Gaussian modes HG,,, HGs;, and
Laguerre—Gaussian modes LGy, LG,,, respectively. Here we
set the wavelength to 500 nm, the PSF size to 51 x 51 pixels
and 15 mm x 15 mm range, and rescaled to a 39 nm pixel size.
The definitions for the amplitude of the Hermite—Gaussian
modes and Laguerre—Gaussian modes are [51]
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Ul (x,y,2) = CH(1/w) expl-ik(x* + 3> /2R)]
x exp[-(x? + y? Jw*)| exp[-i(-n + m + 1)y/]

an(x\/E/w>Hm(y«/§/w), (D3)
WS (r, . z) = CLS(1/w) exp(-ikr? /2R) exp(-1* [ w?)

explei(n + m + Dl expl-i(n - m)

x (_l)min(n,m) (V\/E/u}) |r—ml|

X Lyt (272 /1), (D4)

with R(z) = (z% + 2%)/zps %sz(z) = (2% + 2?) /2, and
v (z) = arctan(z/zp). H ,(x) is the Hermite polynomial of or-
der n, Lj](x) is the generalized Laguerre polynomial, £ = 2% is
the wavenumber, and zp is the Rayleigh range of the mode.
Here we set wavelength 4 = 500 nm,

and z = 0.

wy = 2 mm,

APPENDIX E: TRAINING SET SIZE

We use LG, as the PSF and a fixed test set size of 100 images
with a shape of 512 x 512. The training set sizes for both
PiMAE and DeepSTORM are 1, 5, 10, and 1000 images,
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Iterative optimization in Deconvblind. The PSF estimated by Deconvblind converges to a § function. The scale bar is 0.5 pm.

respectively. As shown in Fig. 15, PIMAE performs well, even
with a training set size as small as five images, whereas the per-

formance of DeepSTORM decreases significantly.

APPENDIX F: ASSESSMENT METRICS

When evaluating the performance of emitter estimation, we use
two metrics: the NRMSE and the MS-SSIM. NRMSE pro-
vides a quantitative measure of the difference between two im-
ages, while MS-SSIM is designed to assess the perceived
similarity of images, taking into consideration the recognition
of emitters by the human eye [52].

NRMSE is defined as

\/Zz,j (Imagetruc - Imagetcst)z

NRMSE =
) - Min(Image

(F1)

Max(lmagetrue true)
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(F2)
where the exponents a,,, §;, and y; are used to adjust the rel—
ative importance of different components. Here a,, = f§; =

and values are 0.0448, 0.2856, 0.3001, 0.2363, 0. 1333 for
j=1,2,3,4,5. The expressions of the exponents /,, c;,
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n°the assessment, we use the max-min normalization
method to process each image as follows:

s(x,y) = (F5)

_ X = Xmin
Xnorm — >
Xmax ~ ¥min

(F6)

where x4, is the normalized image, x is the raw image, x,;, is
the minimum value in the image, and x,, is the maximum
value in the image.

APPENDIX G: DECONVBLIND

The Deconvblind is one of the most popular methods for blind
deconvolution, which iteratively updates the PSF and the esti-
mated image. For each task, we used the training set consisting
of 1000 images and applied the Deconvblind function in
MATLAB [53] to estimate the PSF. These 1000 images were
provided to Deconvblind in the form of a stack.

We demonstrate that the Deconvblind approach leads to a
trivial solution, i.e., a § function, for estimating the PSF. We

evaluate the performance of Deconvblind and PIMAE on 1000
synthetic images generated from the Sketches data set, where
the PSF is generated from a wide-field microscope in focus.
As shown in Fig. 16, the PSF estimated by Deconvblind con-
verges to a 0 function, which is a trivial solution and results in
the estimated emitter image being equal to the raw image. In
contrast, the PIMAE-estimated PSF steadily approaches the ac-
tual PSF as the number of training epochs increases.

APPENDIX H: DEEPSTORM

We compare the performance of PIMAE with other deep-
learning-based methods, such as DeepSTORM, DECODE,
and those that train neural networks for predicting emitter lo-
cations using supervised learning. As a baseline for compari-
son, we reproduce the DeepSTORM method. The original
DeepSTORM model is a fully convolutional neural network
(FCN), which we upgrade to the U-net architecture [7,54,55],
a powerful deep-learning architecture that has shown superior
performance in various computer vision tasks (see Fig. 17).
While incorporating this change, we ensure to adhere to the
original DeepSTORM model’s design and use the sum of
MSE and L1 loss as the loss function.
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During the training process, we use 1000 images containing
randomly positioned emitters simulated using the Image] [56]
ThunderSTORM [57] plugin. These images are convolved
with the PSF of the task, normalized using the mean and aver-
aged standard deviation, and then noise with an intensity of
107 is added to enhance robustness.

APPENDIX I: EVALUATION RESULTS OF ADDING
SPECKLE NOISE TO SYNTHETIC DATA

Speckle noise is a type of granular noise texture that can degrade
image quality in coherent imaging systems such as medical ul-
trasound, optical coherence tomography, as well as radar and
synthetic aperture radar (SAR) systems. It is a multiplicative
noise that is proportional to the image intensity. The probabil-
ity density function of speckle noise can be described by an
exponential distribution,

P =5 e ( a) (1)

Here, z represents the intensity, and ¢ represents the
speckle noise variance. To evaluate the impact of speckle noise
on estimating PSF and emitters, we use LG,, as the PSF and
Sketches as the emitters. We construct three sets of data with
noise variances of 0.1, 1, and 2, respectively, each containing
1000 training images and 100 test images. We use the NRMSE
metric to evaluate the results, as shown in Fig. 18.

APPENDIX J: THE RESULTS USING MS-SSIM
AS THE METRIC

1. Results of Out-of-Focus Synthetic Data

In this section, we present the results of synthetic data with vary-
ing out-of-focus distances, assessed using the MS-SSIM metric.
Gaussian noise with a standard deviation of noisey/raw,,c;n =
0.5 is added to each synthetic data set. The results are
displayed in Fig. 19.

2. Results of SPADE Synthetic Data

We present the results for synthetic data evaluated using the
MS-SSIM metric for HG and LG modes. Gaussian noise with
noiseyy/rawen = 0.5 is added to each synthetic data set. The
results are displayed in Fig. 20.
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3. Results of Noise Robustness

We present the results of synthetic data with different levels of
noise measured using MS-SSIM as the metric. For each syn-
thetic data set, Gaussian noise is added with levels of 0.01,
0.1, 0.5, 1, and 2, respectively. The results are depicted
in Fig. 21.
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APPENDIX K: RESULTS OF REAL-WORLD image NV color centers in diamond. The ability of PIMAE to
EXPERIMENTS handle non-Gaussian PSFs is evaluated in both out-of-focus

. . . . and aberrations scenarios.
We evaluate PIMAE in two real-world experiments. First, we

utilize the imaging results of ER structures obtained from both 1. Results of ER
wide-field microscopy and SIM from the BioSR data set [40]. Figure 22 shows the results of wide-field microscopy, SIM,
Second, we construct a custom-built wide-field microscope to and PiMAE-resolved wide-field microscopy of ER. Figure 23
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Fig. 23. Artifacts in superresolution images reconstructed using SIM. Reconstruction artifacts are a common issue in SIM-reconstructed images,
as evidenced in (c) and (d), due to factors such as nonuniform fringe patterns or phase errors in the reconstruction process. In comparison, the
PiMAE-estimated emitters do not exhibit these artifact problems. The scale bar is 1.00 pm.
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Fig. 24. Wide-field microscopy imaging of NV color centers. (a) Comparison of wide-field microscopy results and PIMAE estimated emitters
results at different out-of-focus distances, with invariant field of view from top to bottom, and different field of view on the left and right, re-
spectively; the scale bar is 2.50 pm. (b) Wide-field microscopy results and PIMAE estimated emitters of nonstandard PSF when the objective is

mismatched to the coverslip; the scale bar is 6.40 pm.

demonstrates that PIMAE is capable of avoiding the artifact
phenomenon seen in SIM.

2. Results of NV Center Imaging

The results of out-of-focus and aberrated wide-field microscopy
imaging of NV color centers, as well as PIMAE-resolved results,
are shown in Fig. 24. The aberrations were generated as follows:
an objective lens with a phase aberration correction ring was
first used to image a 50 nm nanodiamond on the opposite side
of a coverslip with a thickness of 0.11-0.23 mm and a refractive
index of 1.5. The correction ring of the objective lens was then
rotated to match a coverslip with a thickness of 0.1 mm and a

refractive index of 1.5, and this lens was used to observe nano-
diamonds spin-coated on the opposite side of sapphire with a
thickness of 0.15 mm and a refractive index of 1.72, thus ar-
tificially creating an aberration and resulting in a doughnut-
shaped PSF. (Note: Olympus UPLXAPO40X objective lens
was used.)

APPENDIX L: SUMMARY OF RESULTS

In this section, we summarize the results of all the synthetic
tasks in Table 1.



Research Article - “ - Vol. 12, No. 1 / January 2024 / Photonics Research 25
—

Table 1. Summary of Synthetic Data Experiments?®

Synthetic Data

Task Info NRMSE for Emitters NRMSE for PSF
Task PSF Emitters Noise PiMAE DeepSTORM RL PiMAE DB
1 1400 nm Sketches 0.5 0.090 0.111 0.257 0.070 0.195
2 1200 nm Sketches 0.5 0.090 0.106 0.238 0.075 0.144
3 1000 nm Sketches 0.5 0.093 0.110 0.232 0.083 0.098
4 800 nm Sketches 0.5 0.080 0.103 0.201 0.029 0.062
5 600 nm Sketches 0.5 0.073 0.092 0.163 0.018 0.059
6 400 nm Sketches 0.5 0.074 0.081 0.140 0.018 0.051
7 200 nm Sketches 0.5 0.072 0.078 0.130 0.023 0.048
8 0 nm Sketches 0.5 0.071 0.084 0.124 0.022 0.045
9 0 nm Sketches 0.089 0.139 0.198 0.045 0.078
10 0 nm Sketches 1 0.085 0.105 0.156 0.031 0.064
11 0 nm Sketches 0.5 0.071 0.079 0.124 0.022 0.045
12 0 nm Sketches 0.1 0.068 0.066 0.091 0.021 0.042
13 0 nm Sketches 0.01 0.068 0.065 0.082 0.021 0.165
14 600 nm Sketches 2 0.095 0.144 0.231 0.019 0.076
15 600 nm Sketches 1 0.091 0.111 0.185 0.016 0.070
16 600 nm Sketches 0.5 0.073 0.092 0.163 0.018 0.058
17 600 nm Sketches 0.1 0.066 0.073 0.142 0.023 0.030
18 600 nm Sketches 0.01 0.068 0.070 0.135 0.023 0.937
19 HG,, Sketches 0.5 0.075 0.098 0.151 0.028 0.156
20 HG;, Sketches 0.5 0.072 0.097 0.147 0.029 0.161
21 LGy, Sketches 0.5 0.072 0.098 0.154 0.016 0.088
22 LG,, Sketches 0.5 0.073 0.094 0.179 0.042 0.042
23 LGy, Sketches 2 0.100 0.128 0.307 0.069 0.105
24 LGy, Sketches 1 0.078 0.104 0.235 0.048 0.100
25 LG,, Sketches 0.5 0.063 0.094 0.179 0.029 0.098
26 LGy, Sketches 0.1 0.056 0.082 0.117 0.017 0.095
27 LG,, Sketches 0.01 0.061 0.080 0.105 0.022 2.761
28 LG,, Lines/n = 10 0.01 0.040 0.049 0.153 0.028 0.352
29 LGy, Lines/n = 20 0.01 0.058 0.074 0.193 0.037 0.156
30 LGy, Lines/n = 50 0.01 0.096 0.119 0.213 0.059 0.102
31 LG,, Lines/n = 100 0.01 0.158 0.171 0.216 0.130 0.103
32 LGy, Sketches/speckle noise 2 0.085 0.155 0.128 0.026 0.309
33 LG,, Sketches/speckle noise 1 0.078 0.128 0.129 0.043 0.896
34 LGy, Sketches/speckle noise 0.1 0.075 0.084 0.110 0.057 2.871
35 USTC Sketches 0.01 0.086 0.114 0.160 0.135 0.187
“The training set consists of 1000 images, and the test set consists of 100 images.
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